9と10のリビジョン間の差分
2012-11-08 16:33:48時点のリビジョン9
サイズ: 9355
編集者: amylase
コメント:
2012-11-08 20:40:46時点のリビジョン10
サイズ: 10202
編集者: amylase
コメント:
削除された箇所はこのように表示されます。 追加された箇所はこのように表示されます。
行 40: 行 40:
typedef long double LD;
typedef complex<long double> pt;
typedef pair<pt, pt> line;
typedef pair<pt, long double> circle;
typedef vector<pt> poly;
}}}

 * LD : long doubleをこれで書く。定数高速化が必要なときとかはtypedef double LDとかに書き換える。
 * pt : 点もしくはベクトル。abs(x) で長さ。arg(x) で偏角[-pi, +pi]。a + bi = pt(a, b)
 * line : 線分・直線。通る2点(線分では両端)。
 * circle : 円。中心点と半径。
 * poly : 多角形。反時計回りに頂点を持つ。
// primitives
typedef long double Real;
typedef complex<Real> Pt;
typedef pair<Pt, Pt> Line;
typedef pair<Pt, Real> Circle;
typedef vector<Pt> Poly;

Real eps = 1e-9;

inline istream& operator>>(istream& s, Pt& p) {return s >> p.real() >> p.imag();}
inline bool near(Pt p, Pt q){return abs(p - q) < eps;}
}}}

 * Real : long double, double の切り替え用に。
 * Pt : 点もしくはベクトル。abs(x) で長さ。arg(x) で偏角[-pi, +pi]。a + bi = pt(a, b)
 * Line : 線分・直線。通る2点(線分では両端)。
 * Circle : 円。中心点と半径。
 * Poly : 多角形。反時計回りに頂点を持つ。
 * eps : 許容誤差。問題によって値を修正する。
 * operator>> : (x座標) (y座標) と来た時に一発で読み取る。
 * near : 誤差を許容して同じ点かどうか見るよ。
行 55: 行 64:
long double inprod(pt a, pt b){
  return a.real() * b.real() + a.imag() * b.imag();
}

long double det(pt p, pt q){
  return p.real() * q.imag() - p.imag() * q.real();
}
}}}

 * inprod : a, b の内積。射影を取ったりするときに使う。
 * det : a, b が張る平行四辺形の面積。三角形の面積とか。
inline Real dot(Pt p, Pt q){return p.real() * q.real() + p.imag() * q.imag();}
inline Real cross(Pt p, Pt q){return p.real() * q.imag() - p.imag() * q.real();}
}}}

 * dot : a, b の内積。射影を取ったりするときに使う。
 * cross : a, b が張る平行四辺形の面積。三角形の面積とか。a, b を通る直線上の点 x が cross(x, b) = cross(a, b) を満たすことから、abの法線を軸としたパラメータとの解釈もある。
行 69: 行 73:
long double ccw(pt p, pt q, pt r){
  pt n = (q-p) * pt(0, 1);
  long double c = inprod(n, p);
  return inprod(n, r) - c;
}
}}}

 * ccw > 0 → 反時計回り。
 * ccw < 0 → 時計回り。
 * ccw = 0 → 一直線上にある。

 * 直線と点の位置関係にも使えますよ。
// ccw_b : old version of ccw.
inline Real ccw_b(Pt p, Pt q, Pt r) {return cross(q - p, r - p);}

/* ccw :
CD : counter direction
CW : clock wise
OS : on segment
CCW : counter clock wise
D : direction
 */
enum LPposit { P_CD = -2, P_CW = -1, P_OS = 0, P_CCW = 1, P_D = 2};
LPposit ccw(Pt p, Pt q, Pt r) {
  Real c = ccw_b(p, q, r);
  if (c < -eps) return P_CW;
  if (c > eps) return P_CCW;
  if (dot(q - p, r - p) < -eps) return P_CD;
  if (dot(p - q, r - q) < -eps) return P_D;
  return P_OS;
}
}}}
 * ccw_b : 上で述べた cross のパラメータ解釈での値を計算。
 * ccw : コメント参照!
行 84: 行 98:
long double dist(line l, pt c){
  pt a = l.first, b = l.second;
  return abs(det(b-a, c-a)) / abs(b-a);
}
}}}

 * 直線 l と点 c の距離。
inline Real Sabs(Line l) {return abs(l.first - l.second); }
inline Real LPdist(Line l, Pt p) {return abs(ccw_b(l.first, l.second, p)) / Sabs(l); }
inline Real SPdist(Line l, Pt p) {
  if ((Labs(l) > abs(l.first - p) && Labs(l) > abs(l.second - p)) ||
      cos(arg(p - l.first) - arg(p - l.second)) > 0){

    return LPdist(l, p);
  }

  return min(abs(p - l.first), abs(p - l.second));
}
}}}

 * Sabs : 線分の長さ。
 * LPdist : 点と直線の距離。
 * SPdist : 点と線分の距離。
  * L : line, S : segment, P : point
行 94: 行 118:
bool is_cross(line p, line q){ bool crossS(Line p, Line q){
行 103: 行 127:
=== 線分と点の距離 ===
{{{#!cpp
ld stick_point_dist(line l, pt c){
  pt n = (l.second - l.first) * pt(0, 1);
  if(ccw(l.first, l.first + n, c) * ccw(l.second, l.second + n, c) <= 0){
    return lpdist(l, c);
  } else {
    return min(abs(l.first - c), abs(l.second - c));
  }
}
}}}
行 117: 行 129:
pt intersect(line l, line m){
  pt x = l.second - l.first;
  pt y = m.second - m.first;
  pt p = l.first;
  pt c = m.first - l.first;

  double d = det(x, y);
  double k = det(c, y) / d;

  return p + k * x;
Pt intersect(Line p, Line q) {
  Pt vp = p.second - p.first;
  Pt vq = q.second - q.first;
  Pt c(cross(vp, p.first), cross(vq, q.first));
  return Pt(cross(c, Pt(vp.real(), vq.real())), cross(c, Pt(vp.imag(), vq.imag()))) / cross(vp, vq);
行 132: 行 139:
long double area(poly p){
  long double ret = 0.0;
  pt bp = p.back();
  rep(i, p.size()){
    ret += p[i].imag() * bp.real() - p[i].real() * bp.imag();
    bp = p[i];
  }
Real area(Poly p) {
  Real ret = 0.0;
  for(Poly::iterator it = p.begin(); it != p.end(); it++) ret += cross(*it, *(it + 1));
行 141: 行 144:

++w++ ICPCライブラリ

++w++(amylase, y3eadgbe, atetubou(is2012))で使用する ICPC ライブラリ置き場。 (last updated: 7/6 12:21)

  • TODO
    • amylase の手元にある改善版幾何コードを verify して更新。
    • 線型計画を二段階単体法にする。
    • 幾何(凸包・線分アレンジメント)
    • 文字列(KMP method, Aho-Corasick algorithm)
    • (ここには載せないが、蟻本から最大流・最小費用流・拡張ユークリッド・連立線型合同式を持っていく)
    • 余裕があれば有名問題を増やす。
      • グラフ彩色

テンプレート

#include <iostream>
#include <vector>
#include <map>
#include <algorithm>
#include <queue>
#include <cstring>
#include <complex>

using namespace std;

#define rep(i,n) for(int i=0;i<n;++i)
#define pb(a) push_back(a)
#define mp(a,b) make_pair(a,b)
#define F first
#define S second
#define SZ(a) (int)((a).size())
  • だいたいコードの先頭にあると考えておいてね。

幾何

基本要素

// primitives
typedef long double Real;
typedef complex<Real> Pt;
typedef pair<Pt, Pt> Line;
typedef pair<Pt, Real> Circle;
typedef vector<Pt> Poly;

Real eps = 1e-9;

inline istream& operator>>(istream& s, Pt& p) {return s >> p.real() >> p.imag();}
inline bool near(Pt p, Pt q){return abs(p - q) < eps;}
  • Real : long double, double の切り替え用に。
  • Pt : 点もしくはベクトル。abs(x) で長さ。arg(x) で偏角[-pi, +pi]。a + bi = pt(a, b)
  • Line : 線分・直線。通る2点(線分では両端)。
  • Circle : 円。中心点と半径。
  • Poly : 多角形。反時計回りに頂点を持つ。
  • eps : 許容誤差。問題によって値を修正する。
  • operator>> : (x座標) (y座標) と来た時に一発で読み取る。

  • near : 誤差を許容して同じ点かどうか見るよ。

内積・外積の大きさ

inline Real dot(Pt p, Pt q){return p.real() * q.real() + p.imag() * q.imag();}
inline Real cross(Pt p, Pt q){return p.real() * q.imag() - p.imag() * q.real();}
  • dot : a, b の内積。射影を取ったりするときに使う。
  • cross : a, b が張る平行四辺形の面積。三角形の面積とか。a, b を通る直線上の点 x が cross(x, b) = cross(a, b) を満たすことから、abの法線を軸としたパラメータとの解釈もある。

3点の位置関係

// ccw_b : old version of ccw.
inline Real ccw_b(Pt p, Pt q, Pt r) {return cross(q - p, r - p);}

/* ccw :
CD  : counter direction
CW  : clock wise
OS  : on segment
CCW : counter clock wise
D   : direction
 */
enum LPposit { P_CD = -2, P_CW = -1, P_OS = 0, P_CCW = 1, P_D = 2};
LPposit ccw(Pt p, Pt q, Pt r) {
  Real c = ccw_b(p, q, r);
  if (c < -eps) return P_CW;
  if (c >  eps) return P_CCW;
  if (dot(q - p, r - p) < -eps) return P_CD;
  if (dot(p - q, r - q) < -eps) return P_D;
  return P_OS;
}
  • ccw_b : 上で述べた cross のパラメータ解釈での値を計算。
  • ccw : コメント参照!

点と直線の距離

inline Real Sabs(Line l) {return abs(l.first - l.second); }
inline Real LPdist(Line l, Pt p) {return abs(ccw_b(l.first, l.second, p)) / Sabs(l); }
inline Real SPdist(Line l, Pt p) {
  if ((Labs(l) > abs(l.first - p) && Labs(l) > abs(l.second - p)) ||
      cos(arg(p - l.first) - arg(p - l.second)) > 0){

    return LPdist(l, p);
  }

  return min(abs(p - l.first), abs(p - l.second));
}
  • Sabs : 線分の長さ。
  • LPdist : 点と直線の距離。
  • SPdist : 点と線分の距離。
    • L : line, S : segment, P : point

線分の交差判定

bool crossS(Line p, Line q){
  return
    ccw(p.first, p.second, q.first) * ccw(p.first, p.second, q.second) <= 0 &&
    ccw(q.first, q.second, p.first) * ccw(q.first, q.second, p.second) <= 0;
}
  • 線分 p と q が交差するかどうか。

直線の交点

Pt intersect(Line p, Line q) {
  Pt vp = p.second - p.first;
  Pt vq = q.second - q.first;
  Pt c(cross(vp, p.first), cross(vq, q.first));
  return Pt(cross(c, Pt(vp.real(), vq.real())), cross(c, Pt(vp.imag(), vq.imag()))) / cross(vp, vq);
}

多角形の面積

Real area(Poly p) {
  Real ret = 0.0;
  for(Poly::iterator it = p.begin(); it != p.end(); it++) ret += cross(*it, *(it + 1));
  return ret / 2;
}
  • 多角形の面積。凸性は仮定しない。O(n)。
  • 時計回りの時は面積が -1 倍される。abs 取ろう。

円と直線の交点

vector<pt> circle_line_intersect(line l,circle c){
  vector<pt> ret;
  LD di = dist(l,c.first);
  LD r=c.second;
  if(di+EPS > r) return ret;
  pt v=(l.second-l.first);
  v/=abs(v);  
  pt rv=v*pt(0,1);
  rv*=di;  
  if(dist(l,c.first+rv) > di+EPS) rv = -rv;
  v*=sqrt(r*r-di*di);
  ret.push_back(c.first+rv-v);
  ret.push_back(c.first+rv+v);
  return ret;
}
  • 円と直線の交点を求める。
  • 円が直線と接しない場合はemptyを返し、それ以外は取り敢えず二つの要素を持つvectorを返す。

円の共通接線

vector<line> contact(circle p, circle q){
  vector<line> ret;
  if(p.second < q.second) swap(p, q);
  long double d = abs(p.first - q.first);
  pt n = q.first - p.first;
  n /= abs(n);

  if(d + eps < abs(p.second - q.second)){
    ret.clear();
  } else if(eq(d, abs(p.second - q.second))){
    pt t, u;
    t = p.first + p.second * n;
    u = t + n * pt(0, 1);
    ret.push_back(make_pair(t, u));
  } else {
    if(!eq(p.second, q.second)){
      pt t = p.first + (p.second * d / (p.second - q.second)) * n;
      long double theta = asin((p.second - q.second) / d);
      pt u = n * pt(cos(theta), sin(theta));
      pt v = n * pt(cos(-theta), sin(-theta));
      u += t;
      v += t;
      ret.push_back(make_pair(t, u));
      ret.push_back(make_pair(t, v));
    } else {
      pt t = p.first + n * pt(0, 1) * p.second;
      pt u = p.first - n * pt(0, 1) * p.second;
      ret.push_back(make_pair(t, t+n));
      ret.push_back(make_pair(u, u+n));
    }

    if(eq(d, p.second + q.second)){
      pt t, u;
      t = p.first + p.second * n;
      u = t + n * pt(0, 1);
      ret.push_back(make_pair(t, u));
    } else if(d > p.second + q.second){
      pt t = p.first + (p.second * d / (p.second + q.second)) * n;
      long double theta = asin((p.second + q.second) / d);
      pt u = n * pt(cos(theta), sin(theta));
      pt v = n * pt(cos(-theta), sin(-theta));
      u += t;
      v += t;
      ret.push_back(make_pair(t, u));
      ret.push_back(make_pair(t, v));
    }
  }
  return ret;
}
  • vector<line> の各要素が接線。

数論

ミラー・ラビン素数判定法

long long powmod(long long x, long long p, long long m){
  if(p == 0) return 1;
  long long rt = powmod(x, p/2, m);
  if(p % 2 == 0){
    return rt * rt % m;
  } else {
    return (rt * rt % m) * x % m;
  }
}

int miller_test[9] = {2,3,5,7,11,13,17,19,23};
bool isprime(long long n){
  if(n <= ISPR_MAX) return !isnpr[n];

  long long d = n-1, s = 0;
  while(d%2 == 0){
    d /= 2;
    s++;
  }

  for(int i=0; i<9; i++){
    bool iscomp = true;
    li x = powmod(miller_test[i], d, n);
    iscomp = iscomp && (x % n != 1);

    for(int r=0; r<s; r++){
      iscomp = iscomp && (x % n != n-1);
      x = x * x % n;
    }
    if(iscomp) return false;
  }

  return true;
}

ポラード・ロー素因数分解法

long long myrand(long long c, long long n, long long x){
  return (x * x + c) % n;
}
 
long long pollard(long long n){
  long long x = 2, y = 2, d = 1, c = rand();
  while(d == 1){
    x = myrand(c, n, x);
    y = myrand(c, n, myrand(c, n, y));
    d = __gcd(abs(x-y), n);
  }
  return d;
}

有名問題

線型計画法

// linear programming by simplex method
// solve maximize(cx) s.t. Ax <= a
// if not bounded, return -1.
double simplex(vector<double>& c, 
               vector<vector<double> >& A,
               vector<double>& a) {
  // introduce slack variable
  int n = c.size(), m = a.size(), dim = n + m;
  vector<int> N(n), B(m);
  for (int i = 0; i < n; ++i) N[i] = i;
  for (int i = 0; i < m; ++i) {
    B[i] = i + n;
    c.push_back(0);
    for (int j = 0; j < n; j++) A[i][j] *= -1;
    for (int j = 0; j < m; j++) A[i].push_back(0);
  }

  double ans = 0;

  while (true) {
    // check optimized or not
    int s = -1;
    for (int i = 0; i < n; i++) if (c[N[i]] > 0) s = N[i];
    if (s < 0) break;

    // check bounded or not
    double bound = 1e300;
    int r = -1;
    for (int i = 0; i < m; i++) {
      if (A[i][N[s]] < 0) {
        double nbound = -a[i] / A[i][N[s]];
        if (nbound < bound) {
          bound = nbound;
          r = i;
        }
      }
    }

    if (r < 0) return -1;

    // pivotting
    for (int i = 0; i < dim; i++) if (i != N[s]) A[r][i] /= -A[r][N[s]];
    a[r] /= -A[r][N[s]];
    A[r][B[r]] = 1.0 / A[r][N[s]];
    A[r][N[s]] = 0;

    for (int i = 0; i < m; i++) {
      if (i == r) continue;

      for (int j = 0; j < dim; j++) if (j != N[s]) A[i][j] += A[i][N[s]] * A[r][j];
      a[i] += A[i][N[s]] * a[r];
      A[i][N[s]] = 0;
    }

    ans += c[N[s]] * a[r];
    for (int i = 0; i < dim; i++) if (i != N[s]) c[i] += c[N[s]] * A[r][i];
    c[N[s]] = 0;

    swap(N[s], B[r]);
  }

  return ans;
}
  • simplex(c, A, a) : maximize cx, where Ax <= a, x >= 0 なる線型計画問題を単体法で解く。

  • x = 0 が実行可能解であることを仮定している(つまり、TODOとして二段階単体法に改善することがあげられる)。
  • 発散する場合には -1 を返す。有限な最適解は必ず正になっているはずなので、正負を見れば発散したかどうかがわかる。

amylase/icpc (最終更新日時 2014-05-21 21:03:43 更新者 amylase)