(7/25)

6 Uncomputability

6.1 Diagonal method

Note
comp is a not necessarily rec func.
Let's extend it to a total function.
That is,

$$
\operatorname{comp}^{+}(p, x)= \begin{cases}y & \text { if } \operatorname{comp}(p, x) \text { is defined and its value is } \mathrm{y} \\ 0 & \text { if } \operatorname{comp}(p, x) \text { is undefined }\end{cases}
$$

Thm6.1
comp ${ }^{+}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is not recursive.
Proof
By the diagonal method.
Consider the function

$$
\operatorname{diag}(x):=\operatorname{comp}^{+}(x,<x>)+1
$$

By contradiction,
Assume comp $^{+}$is a rec func.
By def, comp ${ }^{+}$is total,too.

Then

$$
\operatorname{diag}: \mathbb{N} \rightarrow \mathbb{N}
$$

is also a total rec func.

Since it is recursive, we can take a code N of diag.
Then we have

$$
\begin{equation*}
\operatorname{diag}(x)=\operatorname{comp}(N,<x>)=\operatorname{comp}^{+}(N,<x>) \tag{1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\operatorname{diag}(N) & \xlongequal[\text { def of } \operatorname{diag}]{\operatorname{comp}}{ }^{+}(N,<N>)+1 \\
& =\operatorname{diag}(N)+1 \\
& \longrightarrow \text { comtradiction! }
\end{aligned}
$$

Cor6.2
$\operatorname{halt}(p, x) \Longleftrightarrow$
$-p$ is a code of a recursive function of arity n, for some n.
$-x=<\vec{y}>, \vec{y}$ is of length n.

- The function p is defined for input \vec{y}.

Then, $\operatorname{halt}(p, x)$ is not recursive.

Proof
If halt is recursive, then

$$
\operatorname{comp}^{+}(p, x)= \begin{cases}\operatorname{comp}(p, x) & \text { if } \operatorname{halt}(p, x) \text { is true } \\ 0 & \text { if } \operatorname{halt}(p, x) \text { is false }\end{cases}
$$

is also recursive.
\longrightarrow contradiction.

Other uncomputable (not-recursive)
predicates:
$-\operatorname{total}(p) \quad$ Does p code a total function?

- equal $_{f}(p) \quad$ Does p code the same function as given f ?

6.2 Some Results on (Un)computability

- Parameter Theorem (A.k.a s-m-n Theorem)
- Recursion Theorem
- Rice's Theorem

6．3 Recursively Enumerable Predicates（帰納的枚挙可能）

Def6．3
A 1－ary predicates $P \subseteq \mathbb{N}$ is recursively enumerable（RE）
$\stackrel{\text { def }}{\Longleftrightarrow}$ There is a 2 －ary predicate Q s．t．$P(x) \Leftrightarrow \exists y Q(x, y)$
Thm6．4
The following are equivalent．
1．P is RE
2．P is semi－decidable．（半決定可能）
That is，
There is a recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$
s．t．$f(x)= \begin{cases}0 & (\text { if } P(x) \text { is true）} \\ \perp & (\text { if } P(x) \text { is false })\end{cases}$
Thm6．5（Negation Theorem）
The following are equivalent．

1．P is decidable．
2．P and $\neg P$ are both RE．
Proof $[1 \Rightarrow 2]$ ．

$$
\begin{array}{ccc}
P \text { is rec. } & \Longrightarrow & \neg P \text { is rec. } \\
\Downarrow & & \Downarrow \\
P \text { is RE. } & & \neg P \text { is RE. }
\end{array}
$$

$[2 \Rightarrow 1$（Idea）$]$.

$$
\begin{aligned}
& \xrightarrow{x} \begin{aligned}
P ? & \text { Yes } / \perp \\
\xrightarrow{x}+\neg P ? & \rightarrow \text { Yes } / \perp
\end{aligned}
\end{aligned}
$$

7 Gödel's imcompleteness

Φ : a set of formulas ("axioms")

Now, fix our symbols :

$$
\begin{aligned}
\text { FnSymb } & =\{0, s,+, \cdot\} \\
\text { PredSymb } & =\{=,<\}
\end{aligned}
$$

Then we're more interested in

Q : Is there Φ

$$
\Phi \Vdash A \Longleftrightarrow I s \models A ?
$$

A: Yes.

$$
\Phi=\{A \mid I s \models A\}
$$

Q2 : Then, what's the problem?
A2: Is this $L K+\Phi$ "mathematical"/"syntactic"?
whether $A \in \Phi$ or not is not "easily" checkable?

Thm(Gödel's incompleteness)

1. If Φ is $\underbrace{\text { recursive axiomatized }}$ and complete
$A \in \Phi$ or not is decidable.
then $\Phi \Vdash A$ or not is decidable.
2. Is $\models A$ is not recursive(decidable).
3. Therefore; there is no rec axiomatized Φ
s.t.

$$
\Phi \Vdash A \Longleftrightarrow I s \models A
$$

