(7/11)

5.8 Equivalence between rec.fn & programs

Prop5.21

Any recursive function can be computed by a while program.

Example

wz.P(Z, z) is computed by

z:=0;
while(—P(Z, 2)){

z:=z+1;
}

return z;

’ Exercise : Simulate primitive recursion using while-programs.

The other direction is non-trivial.

Def5.22(Normalized while programs)

Those programs in the following form.

wi= f(wy, 0, 20);
while(Q(w) # 0){
w = q(w);
}
y = h(w);
return y;
Remb.23

-We don’t bother to define the syntax of while-lang.
-On normalized ones:
* only one working variables — (Challenge 1)

* only one while-loop — (Challenge 2)

Propb5.24

The function computed by a normalized whileprogram is recursive.

Proof
Let the function be denoted by ¢ : N* --» N
Then

o) = h<g# (f(i"’), u=Q (g% (F(), z)))>

Recall : g (z,y) = g(g(- -~ g(x)))

y times

Next

any while program

I

normalized while program

Challenge 1:Go6del Coding
Challenge 2:Program Counter

Def5.25(G6del Coding)

We define G : N* — N by : (N* UN”)

Example
G(1,4,0,2,0) = 211 . 341 50+ 7241 110+1
=22.35.50 .73 11!
= 18336780
Lemb5.26

For each m,the restriction
G|lym =N —= N is PR.

Prop5.27(Decoding is also PR)

There are PR functions

-] :N—N
st. |G(z1---zm)| =m
Ay (), :N? =N
s.t. (G(xl---xn)i) = (ie[l---n])
Proof
|.| :Idea : find first ¢

s.t. the remainder of z <+ pr(i) is not 0.

Notation 5.28
In that follows, G(x1,- -+ ,x,,) is denoted by < x1, -+ , &y, >

Normalizing while-programs, By an example

Mwhile(xs == 0){

Plif(z; == 0){
Blwhile(P(z1, z2)){
[4]551 = f(xfi);

}15]
telse{

Blzy == g(z2);

return xq;

First, put markers, [1],--- ,[8]

Then the given program is equivalent to

while(pe # 8){

cases pc==1 and z3 ==0: pc = 2;
pc==1 and z3#0:pc=2_8;
pc==2 and z; ==0:pc=3;
pc==2 and x; # 0 : pc = 6;
pc==3 and P(x1,x2) : pc =4;
pc==3 and —~P(x1,x2) : pc = 5;
pc==4 :x1:= f(a3);pc=3;
pc==15 :pc=T;

pc==06 :x9:=g(x2);pc=T;
pc==7T7 :pc=1;

}

return xp;
Finally, we encode the multiple variables into a single var. By Godel Coding
w:=<1,x1,x2,23 >

—pe = (w)1

w

N

z1 = (w)
T = (w)3
Tr3 — (w)4

Thmb5.27
Recursive functions are exactly those functions computed by while pro-
grams.

From the above proofs,we also obtain:

Thm5.30(Kleene’s normal form)

For any rec func,f : N* --» N.
there exist

a PR predicate P C N**!

a PR function ¢ : N*+! &+ N
such that

f(@) =g (&, pe.P(, 2))
Proof
rec. func — while — program

— normalized while — program

— rec. func(« above form)

5.9 Universal recursive function

Thmb.31

There exists a recursive function
comp : N? --» N

such that:
for each recursive function f: N™ --» N

there is a natural number p, s.t.
f(@) = comp(p, < & >)

(7/11 00000 OO Universal recursive function 00000000000
O0o00o0O0o0o0ooooooooon)

